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The determination of reliable and accurate values of thermal conductivity of semi-crystalline polymers is
a challenging task because of the intimate coupling existing between crystallization and the conditions of
molding process. In this paper, we describe an experimental device that allows to the molding of the
polymer and to submit it to conditions close to those of the injection process (high pressure and shear).
It permits to identify the thermal conductivity according to the temperature, both in melted and solid
phases by solving an inverse heat conduction problem. Taking into account the shrinkage of the piece
and its anisotropy, our results demonstrate that this conductivimeter is a reliable experimental
apparatus.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The thermal conductivity is one of the essential parameters to
predict with accuracy the temperature in a thermoplastic polymer
part during molding. It is also a parameter for which the scattering
of the results is the most important. Hieber [1] presents a compar-
ison between a large number of data from nine different teams
using various experimental techniques to measure the thermal
conductivity of the isotactic polypropylene (PP) between �160 �C
[2] and 300 �C [3–6]. One can note a wide scattering, at atmo-
spheric pressure, of the values in the solid state in the range
[40 �C, 120 �C] since they vary between 0.18 and 0.27 W/m K. In
the melted phase, the measurement is not easy and the values vary
between 0.13 and 0.22 W/m K in the range [160 �C, 300 �C]. Such
scattering is directly linked to the one of the temperature field,
which has strong consequences on the thermal phenomena analy-
sis. The reasons of this scattering are difficult to understand; one
can discuss the semi-crystalline nature of the solid material and
the morphology, which can induce some discrepancies. Indeed,
Galeski et al. [7] studied the conductivity in spherolites and show
that the anisotropy induced by the crystalline structure on the one
hand and the difference of conductivity between the amorphous
and crystalline phases on the other hand. Therefore, according to
the processing conditions of the sample, a given polymer will be
able to present different thermal conductivities because of the
crystallinity [8,9] and even of the crystalline orientation. This is
ll rights reserved.
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confirmed by Dai and Tanner [10] who show that the anisotropy
of conductivity in a PP subjected to shear is the result of oriented
crystallization driven by the flow (which can lead to shear) during
the filling of the molding cavity. The observation of the oriented
structure development of PP submitted to shear is done using
in situ small- and wide-angle X-ray scattering (SAXS and WAXS,
respectively) [11,12]. Consequently, the measurement of the con-
ductivity must be done under conditions as close as possible of
the processing conditions to reproduce the shearing and must be
systematically related to the crystallinity. In the domain of trans-
formation, the measures must be considered with caution since
the crystallized fraction evolves. Different models are available to
express the thermal conductivity according to the crystallized frac-
tion and are compared by Legoff et al. [13]. They give very close re-
sults considering the relatively weak thermal contrast existing
between the crystalline and amorphous phases.

Confronted to the lack of adapted apparatus [14], we designed
an experimental device to estimate thermal conductivity, which
enables to mold the polymer and to submit it to conditions near
of those of the injection molding (high pressure and shear). This
mold is equipped with a specific instrumentation to identify the
thermal conductivity as a function of temperature, both in melted
and solid phases by solving an inverse heat conduction problem.
This method of analysis requires to know with accuracy the initial
temperature field in the polymer, and to make the measurements
in a thick piece where heat transfers are correctly modeled (i.e.
adequacy of the model).

It is shown in this paper, how this inverse approach associated
to a specific experimental apparatus called ‘‘on-line conductivime-
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Nomenclature

Bi Biot number
Cov covariance matrix
Cp specific heat (J/kg K)
e thickness (m)
Fa anisotropy factor
JM number of parameters
NF number of time steps
RV volumetric shrinkage
Re shrinkage along the thickness
r correlation coefficient
Rtc thermal contact resistance (m2 K/W)
Rtc0 initial Rtc (m2 K/W)
t time (s)
T temperature (K)
V specific volume (m3/kg)
w descent direction

X sensitivity

Greek symbols
a conversion degree
c descent length
k thermal conductivity (W/m K)
/losses heat flux losses (W/m2)
q density (kg/m3)
r standard deviation

Subscripts
a amorphous
cp central plate
pol polymer
sc semi-crystalline
surf surface of the mold
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ter” is validated by determining the thermal conductivity of a very
well characterized polymer (polypropylene HV252).

2. Description of the apparatus

The principle of the conductivimeter is based on the injection
and the cooling of a melted polymer within two identical cylindri-
cal cavities (thickness = 3.9 � 10�3 m), separated by a metallic cen-
tral plate. As shown in Fig. 1, the polymer is sandwiched between
the central plate and two symmetrical heat exchangers. A heat flux
sensor instruments each of these exchangers and thermocouples
are implanted in the middle of the central plate. Temperatures
within the polymer are quite difficult to measure, especially with
thermocouples, during the injection and the cooling of the melted
polymer. From our experience and because of the internal stresses
induced by the crystallization, it is impossible to avoid the dis-
placements of micro-thermocouples. Therefore, measuring the
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Fig. 1. Cutaway view of the conductivimeter device.
temperature of the central plate has a significant advantage: it be-
haves as a capacitive thermocouple with a very well defined geom-
etry, and it is easy to take into account its heat capacity in the
sensor model equations. Therefore, this temperature plate mea-
surement is available as additional data for developing the solution
of the inverse heat conduction problem.

An originality of our molding conditions consists in heating the
mold before the injection step. This enables to start cooling after
the end of injection. Electrical resistances heat the mold and are
designed so that the initial temperature is as uniform as possible
in the molding cavities. After injection, a gas flowing in the heat
exchangers is used for cooling. Two heat flux sensors measure
the heat flow extracted from the molding cavities. Each of these
measurements results of the inverse analysis of the data given by
three micro-thermocouples (Tci, i = 1,2,3). These sensors are not
invasive since their constitutive material and their surface rough-
ness are similar to those of the mold. In addition, a system of hot
channels maintains the polymer in the melted state in the feeding
circuit and the mold is equipped with a heated nozzle.

The removable central plate is maintained by two insulating
polymer rings resisting to high temperature. These rings act as lat-
eral walls of the molding cavities and limit the heat losses in the
radial direction. The central plate is equipped with a rubber-
molded tail that avoids the melted polymer to flow outside the
molding cavities, and allows the connection of the thermocouple
wires. Four thermocouples, placed in the periphery of the central
plate, enable the estimation of the heat losses. Their fabrication
is described in a previous work [15].

During the cooling step of the injection cycle, the metallic plate
can be considered as a capacitive temperature sensor placed in the
heart of the polymer. The value of the Biot number, which defines
the ratio between the internal resistance of the plate (=e/2k) and
the thermal contact resistance Rtc between the metal and the poly-
mer (estimated to 5 � 10�4 m2 K W�1), is close to Bi = 0.05. the
assumption of a capacitive model equation is then valid.

A view of the mold is presented in Fig. 2. Before injection, the
mold and the molding cavities are heated to the injection
temperature of the polymer and the cooling is triggered after filling.
The electrical heaters impose a homogeneous initial temperature.

3. Data acquisition example

Fig. 3 presents a characteristic example of experimental re-
corded data, which will be used to identify the thermal conductiv-
ity. The parameters of the injection process are specified in Table 1.



insulation 

nozzle 
Cooling 

channels 

heaters 

insert 

plate 

Fig. 2. Detail of the whole mold.

0 500 1000 1500 2000

60

80

100

120

140

160

180

200

220

EDCBA

Te
m

pe
ra

tu
re

 (°
C

)

Time (s)

Tc1

Tc2

Tc1'
Tc2'
TPC

Fig. 3. Measured temperatures on the central plate and in the molding cavity.

Table 1
Injection conditions for PP HV252

Injection parameters Experimental values

Injection temperature 210 �C (493 K)
Mold temperature 210 �C (493 K)
Injection time 10 s
Holding pressure before cooling 20 MPa
Holding pressure during cooling Atmospheric pressure
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Fig. 4. Domain of temperature processed for the evaluation of the conductivity.
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The objective of such experiment is to get information on the tem-
peratures of the material in both melted and solid phases. These
measurements are then used to calculate the thermal conductivity
of the injected material as a function of temperature. In order to
uncouple the temperature from the crystallization phenomenon,
a first cooling is carried out until the complete solidification of
the piece. Then, this one is heated until a temperature below the
melting point of the polymer. Finally, the solid piece is cooled
again.

Fig. 3 displays the five temperatures measured by the first two
thermocouples Tc1 and Tc2 located in the flux sensor no. 1, by the
first two thermocouples Tc01 and Tc02 in the flux sensor no. 2 and fi-
nally by the thermocouple located in the central plate TPC.

Before the injection, part A highlights a difference of about 8 K
between the temperature of the wall of the molding cavities and
the temperature in the middle of the central plate.
Part B corresponds to the injection and the setting in regime of
the mold/polymer assembly. Due to the injection of the melted
polymer, the temperature of the central plate increases and then
decreases slightly. It reveals the influence of heat losses in the cen-
tral plate. Thus, before the cooling of the piece, a quasi-steady re-
gime is waited for.

Part C shows the evolution of the temperatures during cooling.
They are quasi-symmetrical on both sides of the cavities. The cool-
ing process is not fast enough to observe significant differences be-
tween the temperatures given by the first two thermocouples of
the heat flux sensor. We therefore considered a spatially uniform
temperature in the metallic part of the mold near the surface of
the molding cavities. We can also notice a plateau of temperature
(T � 120 �C) measured by the thermocouple of the central plate. It
corresponds to the heat release induced by the crystallization of
the polymer.

Part D presents the heating of the piece up to 115 �C, i.e. to a
temperature lower than the melting temperature of PP. The heat
losses in the central plate are still visible by the difference of tem-
perature between the cavity walls and the core of the mold.

Finally, in part E, the solid polymer piece is cooled.

4. Direct problem formulation

Let us consider the example corresponding to Fig. 3. The applied
thermal cycle provides information on the temperature of the
polymer during two distinct phases: the melted phase (a = 0) and
the solid phase (a = 1). Fig. 4 represents the temperature intervals,
for each phase, that are used to estimate the thermal conductivity
of the polymer. It is important to note that some precautions must
be taken in melted state in order to insure that the polymer does
not begin to solidify on the walls of the molding cavity. To estimate
the thermal conductivity with a = 0, the temperature interval has
to be selected in order to avoid starting crystallization in the piece.
Thus, a model of crystallization [13] helps us to know when the
solidification starts at the piece surface.

The estimation of the thermal conductivity when a = 0 or a = 1
(no crystallization model is then required), is performed by solving
an inverse heat conduction problem. It is based on a direct non-lin-
ear heat conduction model without source term according to the
following system of equations:

In the polymer

qpolðTÞCppolðTÞ
oT
ot
¼ o

ox
kpolðTÞ

oT
ox

� �
; 0 < x < epol ð1aÞ



Fig. 5. Structure of the resolution of an inverse problem.
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In the central plate

qCPCpCP
eCP

2
oTCP

ot
¼ �ð/pol þ /lossesÞ ð1bÞ

Boundary conditions

kpolðTÞ
oT
ox

����
x¼epol

¼ /pol ¼
TCP � Tx¼epol

Rtc
ð2Þ

TsurfðtÞ ¼
Tc1ðtÞ þ Tc01ðtÞ

2
ð3aÞ

� kpolðTÞ
oT
ox

����
x¼0
¼ Tsurf � Tx¼0

Rtc
ð3bÞ

Initial condition

Tðx ¼ 0; t ¼ 0Þ ¼ Tsurfðt ¼ 0Þ; 0 < x < epol ð4Þ

where /pol is the heat flux given to the polymer by the central plate
and /losses is the heat flux lost by the central plate.

The mold is assumed to be symmetrical with respect to the
central plate. The boundary condition (Eq. (2)) corresponds to
the heat flux coming from the central plate. The heat losses
/losses, already discussed in [13], are estimated to be constant
during the time interval considered for the thermal conductiv-
ity estimation and is equal to �2500 W/m2 (i.e. a total heat
loss of 0.6 W, which is very small in comparison of the total
heat flux of 55 W through the surface of the sample). The
methodology for its determination has been explained in a
previous publication [13]. At the walls of the molding cavities,
the boundary condition (Eq. (3a)) is given by the experimental
average temperature (calculated from Tc1 and Tc01).

To take into account the thermal effect of shrinkage during
cooling, thermal resistances varying with time have to be consid-
ered [16]. They also depend on the process conditions [17]. The to-
tal thermal resistance (Eqs. (5a) and (5b)) is calculated from the
shrinkage Re(t) associated to the thickness (Eq. (5c))

RtcðtÞ ¼ Rtc0 if DV ¼ 0 ð5aÞ

RtcðtÞ ¼ ReðtÞepol

kair
if DV–0 and RtcðtÞ > Rtc0 ð5bÞ

where kair, the average thermal conductivity of air in the temper-
ature range of cooling, is equal to 0.027 W/m K. Rtc0, the thermal
contact resistance between the material and the mold, is esti-
mated to 6 � 10�4 m2 K/W [13,16,18], for the studied PP in the
melted state and 1.7 � 10�3 m2 K/W in the solid state [13]. DV
is the volume variation induced by the temperature decrease.
DV remains �0 as long as the gate is not frozen (shrinkage is
compensated by the packing pressure).

We consider an identical shrinkage on each side of the part.
The volumetric shrinkage (noted RV(t)) anisotropy is taken into
account through an anisotropy factor Fa, which distributes the
shrinkage in the thickness and in the plane of the sample.
Luyé [19] estimates the shrinkage anisotropy of the PP for a
3 mm thick piece. He determines that Fa varies between 1.74
and 1.61 depending on the holding pressure. In our case, one
finds that the factor of anisotropy is between 1.6 and 1.7

ReðtÞ ¼
RVðtÞ

Fa
ð5cÞ

RVðtÞ ¼
DV
V0

ð5dÞ

RV(t) is calculated for each time step from specific volume expres-
sions (see Section 5), i.e. Eq. (19) for the melted (amorphous) state
and Eq. (20) for the solid (semi-crystalline) state.
5. Description of the inverse method

Let us recall that the inverse parameter estimation consists in
minimizing the deviation between measured temperatures and
calculated ones through the solving of the heat conduction equa-
tions. This difference is called criterion or objective function. In
our case, the variations of the thermal conductivity versus temper-
ature is described under the shape of a vector k = [k1, . . .,kj, . . .,kJM]T,
with JM components, associated to an a priori given temperature
table T = [T1, . . .,Tj, . . .,TJM]T. Between two values Tj and Tj+1 the con-
ductivity is assumed to be linear.

The least-square criterion to be minimized, takes the form of
following equation:

JðkÞ ¼ 1
2

XNF

n¼1

Tðx ¼ 0; tn; kÞ � TCPðtnÞð Þ2 ð6Þ

where NF is the number of sampling times.
The structure of the method, illustrated in Fig. 5, is based on an

iterative algorithm. For each iteration, the vector to identify is cor-
rected up to the convergence of the criterion toward a e value,
which is chosen depending on the variance of the measurement
noise. The inverse algorithm for heat conduction problem has al-
ready been studied and used [20]. It requires the computation of
the gradient rJ(k) of the criterion. The influence of the initial
parameter vector on the estimated solution is usually studied by
running the optimization algorithm for different initial values. In
practice, it is assumed that a range of 0.15–0.35 W/m K is typical
for the thermal conductivity of such polymer, and the algorithm
was initialized with the mean value of this interval. In order to in-
crease the convergence rate of the minimization process, we chose
the conjugated gradient method. It consists in computing at each
iteration, citer the descent depth, and witer

j the descent direction,
according to Eqs. (7)–(9)

kiterþ1
j ¼ kiter

j þ citer �witer
j ð7Þ

Descent direction:

witer
j ¼ �rJiter

j þ biterwiter�1
j ð8Þ

with

biter ¼
rJiter
��� ���2

rJiter�1
��� ���2

Descent depth:

citer ¼ �
rJiter;witer
D E

Xiterwiter
��� ���2 ð9Þ

We mention that the descent depth (Eq. (9)), is not optimal for such
non-quadratic optimization problem, and convergence is not al-
ways guaranteed. Nevertheless, it is necessary to determine
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Table 2
k parameterization vector

[k] k1 k2 k3 k4 k5 k6 k7

T (�C) 116 (Tmax) 110 96 86 76 66 55 (Tmin)
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whether the estimation is possible and with which accuracy. In this
context, we achieved a sensitivity analysis of the temperature mea-
surement to the unknown parameters, which have to be estimated.
This analysis generally indicates whether minimization is possible
or not. The coefficients of sensitivity Xj(t,kj) are given by Eq. (10).
They are defined by the first derivative of the temperature at the
sensor location with respect to each parameter kj. It is similar to
analyse the effect of a small perturbation dkj on the temperature
field

Xjðt; kjÞ ¼
oTðepol; t; kjÞ

okj
¼ lim

dkj!0

Tðepol; t; kj þ dkjÞ � Tðepol; t; kjÞ
dkj

ð10Þ

Assuming that the measurement errors are additive and have a
constant standard deviation, the sensitivity matrix X can be used to
calculate the covariance matrix (Eq. (11)) related to the estimation
of k

CovðkÞ ¼ r2ðXTXÞ�1 ð11Þ

where r is the standard deviation of the measurement noise.
The diagonal terms of Cov(k) correspond to the variance r2

kj of
each parameter. Each non-diagonal term corresponds to each
covariance between the parameters and permits to assess the cor-
relation [21]. So the covariance matrix (Eq. (12)) enables to calcu-
late the standard deviation of the estimation errors and the
correlation coefficient noted r between two parameters according
to Eq. (13):

CovðkÞ ¼
r2

k1
Covðk1; k2Þ

Covðk1; k2Þ r2
k2

 !
ð12Þ

r ¼ Covðk1; k2Þ
rk1rk2

ð13Þ

It is also interesting to determine the relative error on each
parameter. It is usefull to appreciate the quality of the inversion
independently of the magnitude (Eq. (14))

rekj
¼

rkj

kj
ð14Þ

The method of estimation of thermal conductivity is validated
on the HV252 polypropylene provided by SOLVAY�. This PP was
the object of numerous studies within our laboratory; that’s why
its thermal properties are well known [13,22–24]. The models of
the evolution of the heat capacity and the specific volume are given
by the following equations:

Cppolða; TÞ ¼ aCpscðTÞ þ ð1� aÞCpaðTÞ ð15Þ

Vpolða; TÞ ¼ aV scðTÞ þ ð1� aÞVaðTÞ ð16Þ

To identify the specific heat Cpsc(T) and Cpa(T) in each phase of
the polymer, DSC experiments were performed. Heat capacity is
modeled using a linear relation versus the temperature in the fol-
lowing equations:

Cpa ¼ 3:10T þ 2124 with T in �C ð17Þ
Cpsc ¼ 10:68T þ 1451 ð18Þ

The specific volume is deduced from PvT diagrams for which
Fulchiron et al. published a reference paper [22]. In our case, spe-
cific volume is given by the following equations:

Va ¼ 1:138þ 6:773� 10�4T with T in �C ð19Þ
V sc ¼ 1:077þ 4:225� 10�4T ð20Þ

Let us discuss the estimation the thermal conductivity in the so-
lid phase, a = 1. The temperature vector, associated to the conduc-
tivity vector, is chosen within the domain presented in Fig. 6. The
conductivity can be estimated in the temperature range scanned
by the central plate thermocouple. However, in order to cover
the whole temperature domain, it is necessary to choose the min-
imal and maximal temperatures of the experiment as lower and
upper boundary limits. We chose Tmax = 116 �C and Tmin = 55 �C.

Fig. 7 presents the variations of the sensitivity coefficients ver-
sus time calculated in a configuration with JM = 7 parameters. Ta-
ble 2 gives the principle of temperature parameterization of the
thermal conductivity vector. The sensitivity coefficients have the
same order of magnitude and are not correlated. Each parameter
influences the domain of temperature close to the temperature
for which it is defined. It means that the identification of the
parameters is possible and accurate. However, Jarny and Mail-
let[21] note that in the evaluation of a function (kpol(T) in our case),
the sensitivity coefficients amplitudes decrease and get closer to
each other when the number of parameters to estimate increases.
It is due to the fact that each parameter relates to a smaller tem-
perature interval, thereby reducing its impact on this one. Besides,
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in the case of two too close parameters, their correlation is higher
and the relative error on each parameter as well. On the other way,
if the number of parameters of k is lower, the assumption of line-
arity of the thermal conductivity between two temperatures be-
comes much stronger.

Eq. (21) presents the correlation matrix (always in the case of an
identification of seven parameters). The standard deviation of the
noise of measure is equal to 0.05 K

rðkÞ ¼

1 0:54 0:74 0:18 0:18
� 1 0:16 0:37 �0:008
� � 1 �0:27 0:35
� � � 1 �0:65
� � � � 1

0
BBBBBB@

1
CCCCCCA

k2 k3 k4 k5 k6
k2

k3

k4

k5

k6

ð21Þ

It appears more clearly that some parameters are rather highly
correlated. For example, the parameter k2 is closely linked to k3 and
k4, which can harm to its determination. The question of the num-
ber of parameters is then raised. In order to verify the influence of
these correlations on the quality of the inversion, we draw the rel-
ative errors for each parameter (Fig. 8) given by Eq. (14). The max-
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imum is obtained for the parameter k2, and is equal to 0.40%, which
is very low. Thus, despite of some rather high correlation factors,
the quality of the evaluation will not be affected.

It is now necessary to quantify other sources of estimation er-
ror, especially those due to the input parameters assumed to be ex-
actly known in the model equations, and those resulting of the
initial guess in the iterative process. Additional calculations and
sensitivity analysis were then performed. Fig. 9 presents the rela-
tive errors caused by a 10% error (this value is typical and accept-
able for many thermal–physical parameters) on the heat flux
losses, the heat capacity and density, and the initial guess. The
highest errors are due to the uncertainties on the density and the
specific heat. An error of 10% implies a mean error of �10% on
the estimation of the thermal conductivity. Error on the flux losses
has a little impact. The choice of the initial parameter has an influ-
ence only on the evaluation of the components near the beginning
of the cooling. It should be also underlined that the errors due to
measurement noise are of an order of magnitude lower than the
errors due to the known parameters.

Considering these results, one can now estimate the conductiv-
ities of the PP in both melted and solid phases. Fig. 10a and b pre-
sents the evolutions of the square root of the criterion weighted by
the number of time steps (i.e. (J/NF)0.5) and the residuals (deviation
between experimental and calculated temperatures of the central
plate) for solid PP. The residuals depicted in Figs. 10b and 11b
are the time varying deviations between the measured and the
computed temperatures, at the end of the optimization process,
after the final iteration (no. 15 for Fig. 10b, no. 20 for Fig. 11b).
The minimum is reached at the end of 10 iterations and the resid-
uals are less than 2r of the measurement noise, except in the
beginning of the cooling. This difference is due to the difficulty to
take into account accurately the heat losses in the early times in
the calculation of the temperature field.

The analysis of the sensitivities to the parameters estimated in
liquid phase, give similar results to the analysis in the solid phase.
We identified the values of the thermal conductivity for five tem-
peratures. The criterion and the residuals for experiments in the li-
quid state of PP are also depicted in Fig. 11a and b. The criterion
also converges toward a minimum in 10 iterations. The domain
of temperature of the thermal conductivity identified being narrow
since the influence of the heat flux losses on the residuals is more
important. We suppress the thermal conductivities estimated in
the domain where the residual are high because the measurements
are biased.
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Fig. 10. Evolution of the J criterion (a) and residuals (b) for the evaluation of the thermal conductivity in solid phase.
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Fig. 11. Evolution of the J criterion (a) and residuals (b) in the evaluation of the thermal conductivity in liquid phase.
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Fig. 12 summaries the results of the evaluation of the thermal
conductivity in both melted phase and solid phases. They are pre-
sented in parallel of the measures performed with a hot guarded
plate and of the interpolation made by Le Bot [25] on his own mea-
surements. The results obtained in solid phase by our inverse meth-
od are satisfactory. They agree very well with the values obtained
with the guarded hot plate apparatus. However, they underestimate
the results of Le Bot for the lowest temperatures. In liquid phase, the
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Fig. 12. Comparison between the identified thermal conductivities, the measures in
hot plate and the results of Le Bot [25].
thermal conductivity is estimated close to the one given by Le Bot
(measured by shock probe [25]) within a margin of error of 5%.

In the melted state, our results agree with those of Lobo et al. [3]
provided by a shock probe (same method than [25]). For the solid
state, we recover the results of Gobé et al. (see [1]) determined by
steady state concentric cylinders. Our transient method gives
therefore values of conductivities in good agreement with those
obtained with two steady state methods.
6. Conclusion

We propose a new experimental device and an associated
data treatment to estimate the conductivity of semi-crystalline
polymers in processing conditions. Shear effect and rapid crystal-
lization are then taken into account and the estimation is per-
formed on a representative sample. Our results are close to
those presented in the literature, provided that the crystallinity
is the same. This is not necessarily the case and it is a major rel-
evant factor to explain the scattering of the measurements. In
identical conditions of processing, our results are consistent with
those made with a hot guarded plate. Our method requires
nonetheless the introduction of the specific heat as well as the
specific volume according to the temperature and possibly of
the pressure as input data. We have to consider that the crystal-
lization of the polymer generates a specific volume variation and
more accurately shrinkage of the part, which therefore induce
the apparition of an air gap. It is then taken in account by an
equivalent thermal contact resistance. The anisotropy of the
shrinkage adds an additional difficulty for the evaluation of the
conductivity. Finally, a sensitivity analysis indicates that the esti-
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mated properties are strongly influenced by the values of the
thermal–physical properties of the polymer (Cp,q) compared to
those of heat losses or initial guess k.

A modification of the mold is currently in progress to ensure a
constant contact between the walls of the mold and the injected
sample.
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